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INTRODUCTION 

The o b j e c t i v e  o f  the  present research i s  t o  develop a general mathemati- 

ca l  model and s o l u t i o n  methodologies f o r  analyz ing s t r u c t u r a l  response o f  

t h i n ,  m e t a l l i c  she l l - t ype  s t ruc tu res  under l a r g e  t r a n s i e n t ,  c y c l i c  o r  s t a t i c  

thermomechanical loads. Among the  system responses, which are associated 

w i t h  these load cond i t ions ,  are thermal buck l ing,  creep buck l i ng  and r a t c h e t -  

t i n g .  Thus, geometric as w e l l  as mater ia l - type  n o n l i n e a r i t i e s  ( o f  h igh  

order )  can be a n t i c i p a t e d  and must be considered i n  the  development o f  the  

ca l  model. Furthermore, t h i s  must a l so  be accommodated i n  the 

procedures. 

SUMMARY OF PROGRESS 

progress update has been elaborated upon i n  an i n t e r i m  s c i e n t i f i c  

r e p o r t  submit ted t o  the  sponsor dur ing the  summer o f  1986. A second repo r t ,  

desc r ib ing  the devel oped f i n i t e  element, t he  computer code, and several  
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appl i cati ons to cy1 i ndri cal and spheri cal she1 1 configurations, is being 
prepared. It is expected that this second scientific report will be sub- 
mitted to the sponsor during the summer of 1987. 

A complete true ab-inito rate theory of kinematics and kinetics for 
continuum and curved thin structures, without any restriction on the magni- 
tude of the strains or the deformation, was formulated. The time dependence 
and large strain behavior are incorporated through the introduction of the 
time rates of the metric and curvature in two coordinate systems; a fixed 
(spatial) one and a convected (material ) coordinate system. The relations 
between the time derivative and the covariant derivative (gradient) have been 
developed for curved space and motion, so that the velocity components supply 
the connection between the equations of motion and the time rate of change of 
the metric and curvature tensors. 

The metric tensor (time rate of change) in the convected material 
coordinate system is linearly decomposed into elastic and plastic parts. In 
this formulation, a yield function is assumed, which is dependent on the rate 
of change of stress, metric, temperature, and a set of internal variables. 
Moreover, a hypoelastic law was chosen to describe the thermoelastic part of 
the deformation. 

A time and temperature dependent viscoplastic model was formulated in 
this convected material system to account for finite strains and rotations. 
The history and temperature dependence were incorporated through the intro- 
duction of internal variables. The choice of these variables, as well as 
their evolution, was motivated by phenomenological thermodynamic considera- 
tions. 

The nonisothermal elastic-viscoplastic deformation process was described 
completely by "thermodynamic state" equations. Most investigators (in the 
area of viscoplasticity) employ plastic strains as state variables. Our 
study shows that, in general, use o f  plastic strains as state variables may 
lead to inconsistencies with regard t o  thermodynamic considerations. 
Furthermore, the approach and formulation employed by all previous investiga- 
tors lead to the condition that all plastic work is completely dissipated. 
This, however, is in contradiction with experimental evidence, from which it 
emerges that part of the plastic work is used for producing residual stresses 
in the lattice, which, when phenomenologically considered, causes hardening. 



Both limitations are not present in our formulation, because of the inclusion 
of the "thermodynamic state'' equations. 

The obtained complete rate field equations consist of the principles of 
the rate of the virtual power and the rate of conservation of energy, of the 
constitutive relations, and of boundary and initial conditions. These 
formulations provide a sound basis for the formulation of the adopted finite 
element solution procedures. 

One of the most challenging aspects of finite strain formulations is to 
locate analytical solutions with which to compare the proposed formulation. 
Typically, as a first problem, a large strain uniaxial test case was ana- 
lyzed. The case considered examines the rate-dependent plastic response of a 
bar t o  a deformation history that includes segments of loading, unloading, 
and re1 oadi ng, each occurri ng at varyi ng strain and temperature rates. 
Moreover, it was shown that proposed formulation generates no strain energy 
under a pure rigid body rotation. These are surely important demonstrations 
but they only represent a partial test because the principal stretch direc- 
tions remain constant. Finally, a problem which was discussed by Nagtegaal 
and de Jong, and others too, as a problem which demonstrates limitations of 
the consitutive models in many strain formulations, is the Couette flow 
problem. 
test problems show that: 

she 
A 

This problem is solved as a third example. The results of these 

- The formulation can accommodate very large strains and rotations. 

- The formulation does not display the oscillatory behavior in the 
streses of the Couette flow problem. 

- The model incorporates the simplifications associated with rate- 
insensitive elastic response without losing the ability to model 
rate temperature dependent yield strength and plasticity. 

The problem of buckling of shallow arches under transient thermomechani- 
cal load was investigated next. 

The quasi-linear nature of the principle of the rate of virtual power 
suggests the adoption of an incremental approach to numerical integration 
with respect to time. The availability of the field formulation provides 
assurance of the completeness of the incremental equations and allows the use 
of any convenient procedure for spatial integration over the domain V .  In 
the present instance, the choice has been made in favor of a simple first 



order expansion i n  t i m e  f o r  t he  cons t ruc t ion  o f  incremental  s o l u t i o n s  from 

the  r e s u l t s  of f i n i t e  element s p a t i a l  i n t e g r a t i o n  o f  the  governing equations. 

The procedure employed permi ts  the r a t e s  o f  t he  f i e l d  fo rmula t ion  t o  be 

i n t e r p r e t e d  as increments i n  the numerical s o l u t i o n .  Th is  i s  p a r t i c u l a r l y  
convenient f o r  the  cons t ruc t ion  o f  incremental boundary c o n d i t i o n  h i s t o r i e s .  

Even under the  cond i t i on  o f  s t a t i c  ex te rna l  loads and s low ly  growing 

creep e f fec ts ,  the  presence o f  snap-through buck l i ng  makes the  i n e r t i a  

e f f e c t s  s i g n i f i c a n t .  I n  dynamic analyses, t h e  app l i ed  body fo rces  i nc lude  

i n e r t i a  forces.  Assuming t h a t  t he  mass o f  t he  body considered i s  preserved, 

the  mass ma t r i x  can be evaluated p r i o r  t o  the  t i m e  i n t e g r a t i o n  us ing  the  

i n i  ti a1 con f igu ra t i on .  

F i n i t e  element so l  u t i  on o f  any boundary-Val ue problem invo lves  the  

s o l u t i o n  o f  the  e q u i l i b r i u m  equations ( g l o b a l )  together  w i t h  the  c o n s t i t u t i v e  

equat ions ( l o c a l ) .  Both se ts  o f  equations are  solved s inu l taneous ly  i n  a 

s tep by s tep manner. The incremental form o f  the  g loba l  and l o c a l  equat ions 

can be achieved by t a k i n g  the  i n t e g r a t i o n  over the  incremental t ime step 

At=tj+l-tj. The rec tangu lar  r u l e  has been app l i ed  t o  execute the  r e s u l t i n g  

t i m e  i n t e g r a t i o n .  

C lear ly ,  the  numerical so lu t i on  i nvo l ves  i t e r a t i o n .  A s i m p l i f i e d  

vers ion  o f  the  Riks-Wempner constant-arc- length method has been u t i l i z e d .  

This  i t e r a t i o n  procedure which i s  a genera l i za t i on  o f  t he  displacement 

con t ro l  method a l so  a l lows t o  t race  the non l inear  response beyond b i f u r c a t i o n  

po in ts .  I n  con t ras t  t o  the  conventional Newton-Raphson techniques, t he  

i t e r a t i o n  o f  the  method takes p lace i n  t h e  v e l o c i t y  and load r a t e  space. The 

load s tep o f  the  f i r s t  s o l u t i o n  i n  each increment i s  l i m i t e d  by c o n t r o l l i n g  

the  l eng th  ds o f  the  tangent. E i t h e r  the  l eng th  i s  kept  constant i n  each 

step o r  i t  i s  adapted t o  the  c h a r a c t e r i s t i c s  o f  t he  so lu t i on .  I n  each s tep 

the  t r i angu la r -s i zed  s t i f f n e s s  m a t r i x  has t o  be checked f o r  negat ive diagonal  

terms, i n d i c a t i n g  t h a t  a c r i t i c a l  po in t  i s  reached. 

The ana lys is  was performed w i t h  the  a i d  o f  24 pa ra l i nea r  isoparametr ic  

elements. The pa ra l i nea r  isoparametr ic element i s  intended f o r  the  ana lys i s  

o f  o r i en ted  s t r u c t u r e s  where the geometry i s  such t h a t  t he  th ickness i s  smal l  

compared t o  o ther  dimensions. The c h a r a c t e r i s t i c s  o f  t he  element a re  de f ined 

by the  geometry  and i n t e r p o l a t i o n  funct ions,  which are  l i n e a r  i n  the  t h i c k -  

ness d i r e c t i o n  and parabo l ic  i n  the l o n g i t u d i n a l  d i r e c t i o n .  Consequently, 



the element allows for shear strain energy since normals to a mid-surface 
before deformation remain straight, but not necessarily normal to the mid- 
surface after deformation. 

The devel oped sol ution scheme is capable of predicting response which 
includes pre- and post-buckling with thermal creep and plastic effects. The 
solution procedure was demonstrated through several examples which include 
both creep and snap-through behavior. 

The last set of problems which are under investigation consists of creep 

To develop geometrically nonlinear, doubly-curved finite shell elements 
the basic equations o f  nonlinear shell theories have to be transferred into 
the finite element model. As these equations are in general written in 
tensor notation, their implementation into the finite element matrix formula- 
tion requires considerable effort. 

The nonlinear element matrices were derived directly from the incremen- 
tally formulated nonlinear shell equations, by using a tensor-oriented 
procedure. A modified version of the classical thin shell theory based on 
the Kirchoff-Love hypotheses, capable of large strains and rotations, is 
presently employed. For this formulation, we are using five "natural" 
degrees of freedom per mid-surface shell node: three incremental velocities 
and two rates of rotations about the material coordinates a and a . 

This element was introduced to the solution procedure described earlier. 
Few examples of creep and thermal buckling of a cylindrical panel and spher- 
ical cap are currently under investigation. 

In connection with the progress to date, two papers were published in 
the AIAA Journal and one in the "NASA-U. of Akron Sponsored Meeting'' Pro- 
ceedings. Copies of these papers have been mailed to the sponsor. Moreover, 
two papers appeared in the Proceedings of the 28th AIAA/ASME/ASCE/AHS SDM 
Conference. 

or thermal buckling with plastic effects of shells of revolution. 

1 2 

Copies o f  these two papers are attached herewith. 

FUTURE TASKS 
With regard to additional future tasks, one must include the development 

o f  a finite element accommodating the more general shell theory formulations 
(A,B, & C), and the incorporation of this into a code. Moreover, three- 
dimensional effects, especially those associated with normal stresses, will 



be incorporated, either through modification of the developed shell theory or 
through local-global finite element procedures in which the local part will 
be based on three-dimensional analysis. 

Finally, another important extension is to replace the material consti- 
tution (initially homogeneous and isotropic-metal) by a more general one that 
allows the analysis of layered fiber-reinforced composites. 
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Abstract 

A recently developed differential methodology for solution 
of one-dimensional nonlinear viscoelastic problems is presented. 
lysing the example of an eccentrically loaded cantilever beam- 
column, the results from the differentid formulation are com- 
pared to results generated using a previously published integral 
solution technique. It is shown that the results obtained Gom 
these distinct methodologies exhibit a surprising high degree of 
correlation with one another. A discussion of the various factors 
affecting the numerical accuracy and rate of convergence of these 
two proredures is also included. Finally, the inlluences of some 
"higher order" effects, such as straining along the centroidal axis 
are discussed. 

I. htroductioa 

A number of methods are available to solve viscoelastic 
problems in which the behavior of the material may be ade- 
quately characterized by a,linear viscoelastic operator and where 
the deformation of the body is suRciently small to allow the 
use of a linear kinematic formulation [1,2]. Commonly, integral 
transform methods, separation of variables, series expansions 
or other such techniques provide methodologies wherein exact 
clored form solutions may be derived. When exact solutions 
cannot be obtained, approximate techniques, such BS one pro- 
posed by Schapery (31, may provide an alternate approach. 

The inclusion of nonlinear effects in the analysis signif- 
icantly reducer the mathematical tractability of the problem. 
These nonlinear influences can be induced by geometric factors 

resulting from the magnitude of the deformation or Gom ~ O S S  

rotation of cross sections. Alternatively, nonlinearities in the 

material response m a y  need be included to provide an accurate 
model for material behavior. 

~ 
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Independent of whether these nonlinearities are produced 
by geometric or material effects, they invariably result in an 
overall formulation governed by nonlinear equations. Thus, the 
solution methods mentioned above, applicable to linear prob- 
lems, cannot be employed. As such, approximate solution meth- 
ods have been developed and are routinely employed to malyze 
such problems [4]. 

One of these methods is to  idealize the problem is such a 

manner so as to generate inherent simplifications to the govern- 
ing relations. A classical example of this technique was the uti- 
lization of an ideal"'1" cross sectional geometry in early column 
creep buckling studies 151. With this approximation, the equa- 
tions governing equilibrium of the column were reduced to much 
simpler forms involving the "average" stresses in the flanges of 
the ideal beam-column. 

Another approach used extensively was to restrict consid- 
erations to only certain types of time dependent material be- 
havior [6]. In some cases, this involved retaining only secondary 
creep behavior in the material model. Alternatively, and es- 
pecially when "power law" type constitutve laws were used, 
the constants or exponents of the law were restricted to spe 

cial values for which closed form solution was possible [i]. In 
a few cases, this simplification of the material model, as well 
as the aforementioned geometric simplification technique, were 
employed simultaneously to enable solution. A survey of most 
of these methods has been provided by Hoff [SI. 

An exact numerical solution technique for geometrically 
nonlinear viscoelastic problems has been presented by Rogers 
and Lee [9]. A recent paper by the authors [lo] provides a 

method for bounding the solution for such prohlems. In both 
of these techniques, the solution to the problem is formulated 
in terms of an integral equation which is nonlinear with re- 
spect to both time and space. From this, solutions may then 
be readily obtained using relatively standard numerical tech- 
niques. Generally, both the exact and bounding technique can 
be employed for problems wherein the response of the mate- 

rial may be adequately characterized using a linear viscoelastic 
model, but where the resulting time dependent deformation of 
the body warrants the use of a nonlinear kinematic formulation. 

. . .  . . . .  . .  . . . . . . . . .  <...a, 

.... . .~ . . . . . . . . . . . .  . .  - . . . . . . . . . . . .  __ . . .  
. ~~ 



Since the integral solution technique can be applied only 
when the response of the material either is or may be reason- 
ably approximated as being linear, problems involving nonlinear 
viscoelastic material behavior cannot be addressed using these 
methods. rnfortunatdy, many materials, and especially the ele- 
vaied temperature behavior of most metals, require such nonlin- 
ear characterizations. Consequently, an alternate solution proce- 
dure for one-dimensional problems involving nonlinear kinematic 
and nonlinear material effects has been developed. This method, 
hereinafter referred to as the differential formulation, is based 
on the direct solution of the nonlinear differential equations of 
equilibrium. 

Similar to the integral method, the overall procedure is 
predicated on the assumption of a quasistatic response. This 
asumption effectively "decouples" the temporal and spatial de- 
pendence of the problem in such a manner so as to allow the 
p n e r d  solution to be treated as the combination of the soh- 
tions to a nonlinear "houndary value" problem and a nonlinear 
-initial value' problem. The first of these, the equations char- 
acterizing the time dependent states of quasistatic equilibrium, 
are solved through the use of a Newton type method Ill]. In 
contrast, the "initial value" problem, resulting from the non- 
linear constitutive law. governs the manner by which the body 
progresses from one state of quasistatic equilibrium to the SUC- 

reeding one. Sumerical solutions for this part of the problem are 

eerierated using a fourth order Runge-Kutta method. Using this 
technique. pro1)lems involving the nonlinear thermoviscoelastic 
bhavior of thin structural members have recently been exam- 
ined 12,. 

In addit ion to presenting the differential formulation tech- 
nique. a comparison of results obtained through the use of the 

integral and differential formulations is provided. The prohleiti 
of an eccentrically loaded viscoelastic cantilever beani-column is 
emploved as the vehicle through which the comparison is per- 
formed. Because of the inherent limitation of the integral tech- 
nique. this comparison is restricted to the consideration of a 
linear viscoelastic material. The specific case considered is that 
of the three parameter viscoelastic solid which has been exam- 
ined in a number of st.udies [10,13,14]. The results obtained 
from these.two distinct methods of solution exhibit a surpris- 
ingly high degree of correlation with one another thereby estab- 
lishing a high level of confidence in the vdidity of the methods. 
Finally. the differential formulation is employed to examine the 
influences of some of the "higher order" effects for the class of 
prohlenis under consideration. 

11. Integral Formulation 

Since the integral solution is available in literature [9,10], 
only a brief outline of its development is presented herein. The 
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solution is based on the assumption that the beam-colunn is 
thin and composed of a linearly viscoelastic material. Its ge- 
omerty in the deformed configuration is illustrated in Fig. l. 
Note that the eccentric load is assumed to be applied quasi- 
statically and its direction does not vary with time. 

Reference line extensional strains are assumed to be neg- 
ligibly smalL Thus the coordinate s' is employed to specify po- 
sition in both the initial and deformed configurations. A nondi- 
mensional coordinate, s, is defined by dividing 6' by the length 
of the beam, L. Assuming a linear distribution of the strains 
through the depth, bending thus occuring within a Bernoulli- 
Euler context, results in a moment-curvature relationship given 

by 

k ( S ' , t )  = (!) /' -aD J(1 - T)[ - ) ]  dT ' (1) 

where s(J',~) denotes the curvature and M ( s ' , T )  the bending 
moment at location s'. I is the moment of inertia of the beam 
and J ( 1 )  the creep compliance of the material. For the eccentric 
load, R ( t ) ,  the nioment at position s' is given by 

Figure 1. Beam-Column Geometry for Integral Formulation 

From kinematic considerations, it is noted that 

a w , q  
K ( S ' , t )  =- 

az(S', 1 )  - = cos qq s', 1 )  
ad'  

as# 

as, 

= sin &(st, I )  

The boundary conditions for the problem are 

(3)  

4(04- = 0 
(4 )  M( 1 ;y = aR( t )  cos d[L, t )  

where a(t )  = 4 ( L , t )  for a "rigid" extension. 
Substituting Eqns. (2) and (3) into Eqn. (1) followed by 

differentiatlon with respect to 8 yields the governing differen- 
tial equation. Using the methodology detailed in 191- it can be 



shown that, for quiescent initial conditions, the solution for this aU ad 
equation is given by 5 5  

N =  - F ( 1  i- + ~ ( ( a c o s d ( L )  + W(J) - r ( L ) ) )  (110)  

and 
~ ( s , r )  = (I) L2 [J(o)R(t)@(s,t) + 1' J ' ( t  - r ) R ( r ) W s , t ) d r ]  

hl = F ( a  cos o(L) x(5) - w( L 1 )  ( 1 I h l  

where N and M, the force and tiioment resultants. respectively. 
are defined as 

(5) 

where 

and 

N = l n l l d . 4  and hI = (1%. h )  

Based upon an additive decomposition for total strain. e t .  

such that et = e, + cc where ec and c, represent the elastic and 
creep strain components, respectively, yields, after substitution 
into Eqns. (11) and (12). 

g(5 ,u )  = u, 0 5 u 5 s 
=s. S < U S l  

(7) 

and where the prime, ( 0, in Eqn. (5) denotes differentiation 
with respect to the argument of the function. 

" (a cos b( t 1- w(s)- x( L )) ) - S, ( 13a ) = -F( lt x+z Note that Eqn. (5) represents a time convolution of anon- 

linear Fredhoh type integral equation, Eqn. (6). Numerical so- 
lutions for this set of equations are accomplished using Picard's 
method of successive substitutions [15]. The spatial integrals 
are approximated using Newton-Coates formulae; a fixed step 

and 

(136)  E I z  86 = F ( ~ c a s p ( L )  -i W ( S )  - ~ ( t ) )  - 11, 

trapezoidal rule is used for the time convolution. 
-. 

where A represents the area of the cross section. I denotes its 

111. Differential Formulation : moment of inertia and the "pseudo-resultants" Xc and >Ic  are 

defined by 
Similar to the integral formulation, the differential formu- 

lation for this prohlem is based on the assumption that bending 
of the h e m  occurs in accordance with the Euler-Bernoulli hy- K, = Ec,dA and XI, = q E t ,  d.4 ll4O.b). 

potheses. The functions u(s,/) and w(s,f) are employed to de- 
note, respectively, the axial and transverse deflection of points 
on the centroidd axis. From this, the extensional strain dong 
the centroidd axis, eo, is approximately given by 

Numerical solutions for Eqns. ( 1 4 )  are cotiipured using a 

modified Newton type nrethod suggested by Thurston . 1 3 .  To 
illustrate this method consider a nonlinear differential term of 

the form du"dw" where du and d x  are differentials of the func- 
tions u and w and m and n represent integer exponcnt5. t\scunl- 

ing that close trial solutions it and 1 are available which differ 
from the exact solution hy the small quantities 4 w  and l u  so 

that = fi t  Au and H, = + As, then 

eo 55 - al l a w 2  (8) 

Sote that the term :($)' has been neglected as small in com- 
parison to 5. If, in addition, both the strain at the centroidal 
axis and 2 are small in comparison to 1 then it is relatively 

as + Z(Z) 

Thus, for a linear variation of strain through the cross section, 
this yields 

where j( ) denotes a nonlinear function of fi and in. and 0': 
indicates terms of order AuAw and higher. If the trial solution 
is indeed close to the true solution, then the corrections. l u  

(10) and As, will be small. Consequently. the quadratic and higher 

~ , ~ ~ l ~ ~ i ~ ~  the Principle of Virtual Work followed hy inte- 
grating by parts and then manipulating algehraicdly eventually 
yields the equilibrium equations 

order terms in the corrections sill he negli-:' le in coniparison 
to the linear terms and therefore may be neglected. Thus. under 
these conditions, the right-hand side of Eqn. (15) may be closelv 
approximated by the linearized form consisting of just the first 

. 

three terms on the right-hand side. 
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the process repeated until convergence is obtained. 
Table 1. Differential Elastic Solution Versus Number 

of Nodes for PIP, = 0.75 and a / L  = 0.05 Sumerical solution of Eqns. (13) also requires evaluation 

of P/P, = 0.75. The Euler load, P,, here is based on a perfect 
geometry and use of the instantaneous compliance of the mate- - rial, J ( 0 ) .  Table 2 provides a similar comparison for the same 

loading and eccentricity ratio but for the integral formulation. 

of the "pseudo-resultants" N, and M, at each point of the finite- 
difference mesh. This is accomplished by evaluating the accu- 
mulated creep strain a t  select number of points across the cross 

. section and then using a three point Newton-Coates quadrature 
Transverse Deflection for Various Numbers of Elements (in) 

Number of Elements 
formula repetitively to approximate the area integral. Evalua- 
ticn of the accumulated creep strain at each of these points is 
acconiplished through the use of a fourth order Runge-Kutta in- 
regration routine to integrate the constitutive law expressed in 
a differential format. 

IV. Example Problem 

The specific example considered is that of a 12 in. long 

s = s'/L 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

40 
0.000000 
0.024653 
0.098189 
0.219074 
0.384931 
0.592512 
0.837815 
1.116191 
1.422456 
1.750997 
2.095877 

20 
0.000000 
0.024705 
0.098307 
0.219332 
0.385376 
0.593187 
0.838755 
1.117426 
1.424007 
1.752879 
2.098098 

% Diff 

0.130 
0.120 
0.118 
0.116 
0.114 
0.112 
0.111 
0.109 
0.107 
0.106 

beam-column. For simplicity, a square cross section of dimension s = S ' I L  40 10 % Diff 
0.5 in. has been assumed. It is also assumed that the beam- 0.0' 0.000000 0.000000 

0.1 0.024673 0.024809 0.551 
0.585 0.2 0.098189 column is fabricated from a material which can be modeled as 

a three parameter viscoelastic solid. The creep compliance for 0.3 0.219074 0.220289 0.555 
0.4 0.384931 0.387110 0.566 

this model. illustrated in Fig. 2, is given by 0.5 0.592512 0.595755 0.547 

0.098763 

0.6 0.837815 0.842435 0.551 
0.7 1.116191 1.122177 0.536 

J ( r ) / J ( O )  = 1 + !Ez/El]e-''+* (16) 0.8 1.422456 1.430090 0.535 
0.9 1.750997 1.760165 0.524 

where r, = ,'El. For these computations, the numerical values 1.0 2.095877 2.106817 0.522 
for the pararricters have been selected SO that T. = 1. Thus, (% differences are with respect to 40 elenlent solution) 

A five point grid in the transverse direction is used for 
computation of the "pseudo-resultants" in the differential for- 
mulation. The points are equidistantly spaced with the first 
and last located at the extreme fibers and the central point PO- 
sitioned on the centroidal axis. 

Since the solutions of both the' differential and integral fot- 
mulations are only satisfied at a discrete number of points over 
the length of the beam-column, the fist question that must be 

481 

element model results. Additionally, the relative magnitude of 
the errors between the 10 and 40 element models of the differ- 
ential formulation are virtually identical to those exhibited by 
the integral solution methodology. Although not specifically in- 
dicated on these Tables, it should also be noted that the angles 
of rotation are not always small. For example, at this load and 
eccentricity, the initial elastic end rotation of the beam-column 
exceeds 17 deg. Of course, smaller rotations are exhibited at the 
lower loads and lower eccentricities. 
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Table 2. Integral Elastic Solution Versus Number 
of Nodes for P/P, = 0.55 and a/L = 0.05 

Table 3. Integral and Differential ($ )  Elastic 
Solutions for Various Loads a/L = 0.05 

~~ 

Transverse Deflection from Various Solutions (in) 

Transverse Deflection for Various Numbers of Elements (in) Exact 

S = J'/L 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

s = s'/L 

Number of Elements 
% Diff 40 

0.000000 
0.024616 
0.097967 
0.218586 
0.384079 
0.591200 
0.835951 
1.113686 
1.419227 
1.i46972 
2.091003 

40 
0.000000 
0.024616 
0.097967 
0.218586 
0.384079 
0.591200 
0.835951 
1.113686 
1.419227 
1.746972 
2.091003 

20 
0.000000 
0.024652 
0.098125 
0.218890 
0.384691 
0.592089 
0.837267 
1.1 15374 
1.421422 
1.749594 
2.094171 

10 
0.000000 
0.024781 
0.098753 
0.220123 
0.386547 
0.595443 
0.841727 
1.120936 
1.429034 
1.758422 
2.105685 

0.146 
0.161 
0.139 
0.159 
0.150 
0.155 
0.152 
0.155 
0.150 . 
0.152 
% Diff 

0.650 
0.802 
0.703 
0.643 
0.718 
0.691 
0.651 
0.691 
0.655 
0.702 

sin d Angle 
s = d / L  Integral a/& 2 Diff (de:) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

for PIP, = 0.25 
0.000000 0.000000 
0.002615 0.00261G 0.04 
0.010450 0.010448 -0.02 
0.023444 0.023445 0.00 
0.041 520 0.04 1531 0.03 
0.064590 0.064589 0.00 
0.092475 0.092483 0.01 
0.125010 0.125031 0.02 

0.203256 0.203259 0.01 
0.248513 0.218497 -0.01 

0.162039- 0.162044 0.00 

for PIP, = 0.50 
0.000000 0.000000 
0.008283 0.008285 O.O? 
0.033056 0.033044 -0.04 
0.053940 0.073948 0.01 
0.130441 0.130516 0.06 
0.202009 0.201999 0.00 
0.287513 0.285559 0.02 
0.385945 0.386070 0.03 
0.496355 0.496382 0.01 

0.00 
0.23 
0.50 
0.i4 
0.91 
1.22 
1 .11 
1.66 
1 .s7 

?.25 
3.07 , 

0.00 
0.59 
1.57 
2.33 
3.07 
3.56 
4.40 
5.01 
3 .32 _ .  

6.01 
1.0 0.746172 0.546650 -0.01 6.31 

(% differences are with respect to 40 element solution) 0.9 0.616919 0.615049 0.02 

Therefore, it is concluded that both formulations exhibit 
the same low level of sensitivity to the number of elements used 
in the analysis. Concurrently, these results also indicate that 
a 10 element model cin be used with either method without 
generating si6;Lificant errors in the analysis. It should be noted 
that all of the diflerential formulation results presented above 
are based on the use of an exact expression for evaluating the 
angle of rotation. 

A direct comparison between the resutts generated by the 
two formulations is provided in Tahles 3 and 4. Again, the com- 
parison is based on the 0.50 eccentricit; ratio which inherently 
produces larger angles of rotation. The angle of rotation of the 
cross section, determined t o m  the integral technique, are also 

provided. 

Table 3 is based on the use of an exact expression for 
evaluation of sin 4 in the solution of the differential methodol- 
ogy. The "approximate" sin4 results, provided in Table 4, on 
the other hand, are based on use of the common approxima- 
tion s in4  2 - a W / a J ,  to calculate the angle of rotation. Note 
that, other than this particular change, these two differentid 
formulations are, otherwise, completely identical. Both include 
the influences of axjal i ~ s  well as transverse deflection on the be- 

havior of the beam-column. The influence of deleting the axial 
deformation on the accuracy of the predicted results is discussed 
later. ' 

for P/Pe = 0.55 
0.0 0.000000 0.000000 0.00 
0.1 0.024781 0.024809 0.11 7.37 
0.2 0.098753 0.098i63 0.01 4.6Q 
0.3 0.220123 0.220289 0.06 6.91 
0.4 0.386547 0.385110 0.15 9.03 
0.5 0.595443 0.595T55 0.05 10.9; 
0.6 0.841727 0.842435 0.08 12.69 
0.7 1.120936 1.122157 0.11 14.23 
0.8 1.429033 1.430090 0.07 13.41 
a.9 1.73842? 1.760165 0.10 1G.41 
1.0 2.105685 2.106815 0.05 1 5.04 
(% differences are with respect to integral solution) 

(cornparisons hased on results froiii 10 rlcliirric 1 1 1 4 1 1 h s l ~ )  

As the data of these Tables indicate. there are no cicnifi- 
cant differences in predicted transverse deflections. Even for an 
end rotation angle of 17 deg, the differences between the various 
results is well below that required in engineering computations. 
It should be noted that this high level of correlation continues 
to exist for even greater angles of rotation. The reason why 

this high correlation exists is that, under compressive loadins. 
the derivative of the axial displacement is negative. Since. the 
square of the slope of the transverse deflection is always positive. 
these algebraically combine so that the sum is lower in niagni- 
tude than either of the individual terms. This serves to reducc. 
the magnitude of the centroidal axis  swain. Because the differ- 
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Table 4. Integral and Differentid (2) Elastic The net result of these changes is to create a differen- 
tial model where the centroidal axis effectively is inextensional. I Solutions for Various Loads a/L = 0.05 

While it might be anticipated that this would improve the cor- 
relation between the m e r e n t i h  and integral results, such is not 
the case. When the angle of rotation is very small, as those 

Transverse Deflection from \%trious Solutions (in) 

0.o 
0.1 
0.2 
0.3 
0.4 
0.5 

! 0.6 
0.7 

I 

0.6 
0.9 
1.0 

i 
I 
I 

0.0 
0.1 

I 0.2 
1 0.3 

0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .0 

I 
I 

i 0.0 
0.1 

I 0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.S 
0.5 
1 .o 

i 

Approx. 
sin 6 

Integral a/& % Diff 

0.000000 0.000000 
for P/P, = 0.25 

0.002615 0.002616 0.00 
0.010450 0.010448 -0.02 
0.023444 0.023435 0.00 
0.041520 0.041531 0.03 
0.064590 0.064589 0.00 
0.092355 0.092483 0.01 
0.125010 0.125031 0.02 
0.162039 0.162044 0.00 
0.203256 0.203279 0.01 
0.248513 0.248497 -0.01 

f0l 
0.000000 
0.008283 
0.033056 
0.053940 
0.130441 
0.202009 
0.285513 
0.385945 
0.496355 
0.616919 
0.546572 

- P f P, = 0.50 
0.000000 
0.009286 0.04 
0.033044 -0.04 
0.053949 0.01 
0.130516 0.06 
0.202000 0.00 
0.285560 0.02 
0.3860il 0.03 
0.496383 0.01 
0.617050 0.02 
0.746672 -0.01 

for P/P, = 0.75 
0.000000 0.000000 
0.024781 0.024810 0.12 
0.098753 0.098567 0.01 
0.220123 0.220299 0.08 
0.386547 0.385128 0.15 
0.595443 0.595782 0.06 
0.841727 0.842473 0.09 
1.120936 1.122228 0.12 
1.429034 1.430155 0.08 
1.758422 1.560244 0.10 
2.105685 2.106911 0.06 

Angle 
(deg) 

0.00 
0.25 
0.50 
0.74 
0.98 
1.22 
1.44 
1.66 
1.87 
2.07 

2.25 

0.00 
0.79 
1.57 
2.33 
3.07 
3.76 
4.40 
5.01 
5.52 
6.01 

6.38 

0.00 
2.37 
4.68 
6.91 
9.03 

10.97 
12.68 
14.23 
15.41 
16.44 
li.04 

which result from a low level of loading and a s m a l l  eccentricity, 
all the formulations provide virtually identical predictions. How- 

Table 5. Integral and Modified Differentid ( f ) 
Elastic Solutions for Various Loads a/L = 0.05 

Transverse Deflection from Various Solutions (in) 

Modified 
(w/o 4 Angle 

s = s'/L Integral B/Bt  % Diff (deg) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

for P/P, = 0.25 
0.000000 0.000000 
0.002615 0.002616 0.00 
0.010450 0.010446 -0.04 
0.023444 0.023444 0.00 
0.041520 0.041527 0.02 
0.064590 0.064586 -0.01 
0.092475 0.092478 0.00 
0.125010 0.125030 0.02 
0.162039 0.162043 0.00 
0.203256 0.203287 0.02 
0.248513 0.248508 0.00 

f01 
0.000000 
0.008283 
0.033056 
0.073940 
0.130441 
0.202009 
0.287513 
0.385945 
0.496357 
0.616919 
0.746772 

r P/P, = 0.50 
0.000000 
0.008294 
0.033073 
0.074032 
0.130665 
0.202274 
0.287975 
0.386711 
0.497264 
0.618270 
0.748235 

for PIP, = 0.75 

0.13 
0.05 
0.12 
0.17 
0.13 
0.16 
0.20 
0.18 
0.22 
0.20 

0.00 
0.25 
0.50 
0.74 
0.98 
1.22 
1.44 
1.66 - 
1.87 
2.07 

2.25 

0.00 
0.79 
1.57 
2.33 
3.07 
3.76 
4.40 
5.01 
5.52 
6.01 

6.38 

0.00 
3.07 2.37 
2.98 4.68 
3.15 6.91 
3.30 9.03 
3.32 10.97 
3.46 12.68 

I"; differences are with respect to integral solution) 0.0 0.000000 o.~odooo 
1 roliiparisons based on results from 10 element.models) 0.1 0.024781 0.025543 

0.2 0.098753 0.101698 
0.3 0.220123 0.227053 
0.4 0.386547 0.399299 
0.5 0.595443 0.615237 
0.6 0.841727 0.870876 I cnce hetaren the exact and approximate expressions for sin 4 is 

rt.1att.d to the "'1 + 2c0 in the denominator of the exact expres- 
sion. reducing the magnitude of the centroidd strain inherently 
tnlpro\er tl-e accuracy of the approxhation. 

This influence is best illustrated by the data of Table 5. 

Here. the integral solution is compared to an approximate soh- 
tion for which the effect of the centroidd a x i s  strain terms has 
heen suppressed. This w a  accomplished by first eliminating 
6' the  (arvjas)*  terms from the governing equations. The Ed 
niodulus-area product H'= then artificially increased through 
multiplication by a factor of 1000. This second change reduces 
the magnitude of the axial deflection by approximately the same 

i 

I 
i 

1 
i 

0.7 1.120936 1.161483 3.62 14.23 
0.8 1.429034 1.481683 3.68 15.41 
0.9 1.758422 1.825548 3.82 16.44 
1.0 2.105685 2.186516 3.85 17.04 
(% differences are with respect to integral solution) 

(comparisons based on results from 10 element models) 

ever, a3 the angle of rotation increases, as those which occw at 

the higher loadings and the greater load eccentricity, the mod- 
ified dflerential formulation predictions begin to diverge kom 

those of the other two. The difference between the predicted 
results is most notable for the highest load and largest load ec- 

I factor. centricity example. 
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This behavior results from the way the end of the beam- 
column deflects. In the modified model, the end of the beam- 
column basically moves only in the vertical direction (see Fig. 1). 

The standard model, however, allows the end to move both ver- 
tically and horizontally. Thus, for a given vertical deflection, the 
leftward movement predicted by the standard model increases 
the angle of rotation. This reduces the moment by reducing the 
moment arm. Thus, to support a given load, the standard for. 
mulation beam-column model need not deflect as much as the 
modified model must. 

Comparisons of the viscoelastic predictions provided by 
the integral and the exact differential are provided in Table 6. 
A comparison with the approximate s in4  differential solution 
is not included because the differences between the exact and 
approximate results again are so smal l  as to be negligible. These 
computations are based on the use of an ideal three element 
"limited" material model illustrated in Fig. 2. 

As demonstrated by the data of this Table, the high cor- 
relation between the elastic solutions provided by the integral 
and differential solution methods carries over directly into the 
viscoelastic analysis. 

The final item meriting discussion is the length of the time 
increment used in each of the formulations. Unlike the prior re- 
sults, some differences do exist between the maximum allowable 
time step increments for the integral and differential formula- 
tions. Additionally, the allowable time step increment for the 
integral formulation exhibits a higher dependence on the Actual 
angle of rotation than does the differential formulation. 

In general, a relatively small time step increment must be 
used with the integral solution methodology. For example, the 
results presented above are based on the use of a 0.01 time step. 

As the length of this time step is increased, the accuracy of the 
solution decreases and tends to underpredict the deflection. This 
convergence "from below" is not surprising since the convolution 
integral is approximated as the sum of a finite number of terms. 

In contrast, much larger time step increments can be used 
with the differential formulation. This is principally attributed 
to the high accuracy provided by the RungcKutta integration 
routine. Most of the results provided above were developed using 
a 0.10 time step. Additionally, the allowable length for this time 
step increment tended to be rather insensitive to the angle of 
rotation. The allowable time step for the integral formulation, 
on the other hand, exhibited a high level of sensitivity to the 
angle of rotation. Larger angles of rotation required significantly 
shorter time steps for accurate results to be obtained. 

These factors combine in a rather interesting manner with 
regard to which method of analysis is computationally more ef- 
ficient. Typically, for the analysis of short periods of viscoelas- 
tic deformation the integral solution method was two to three 
times faster than the differential method. This is attributed to 

Table 6. Integral and Differentid Viscoelastic 
Solutions for Three Time Constants 
P/P, = 0.50, and a/L = 0.05 

Transverse Deflection (in) 

s = s' /L 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Exact 
sin 6 

Integral a/& % Diff 

at 
0.000000 
0.008283 
0.033056 
0.073940 
0.130441 
0.202009 
0.28 75 13 
0.385945 
0.496355 
0.616919 
0.546772 

time = 0.0 
0.000000 
0.008285 0.02 
0.033044 -0.04 
0.073948 0.01 
0.130516 0.06 
0.201999 0.02 
0.287559 0.02 
0.386050 0.03 
0.496382 0.01 
0.617049 0.02 
0.546G70 -0.01 

at  time = 1.0 

0.015083 0.015069 0.04 
0.060151 0.060128 -0.04 
0.134319 0.134344 0.02 
0.236430 0.236612 0.08 
0.365200 0.365193 0.00 
0.518035 0.518161 0.02 
0.692634 0.692946 0.05 
0.886869 0.886967 0.01 
1.096666 1.097006 0.03 

0.000000 0.000000 

1.320154 1.320004 -0.01 

at time = 2.0 
0.000000 0.000000 
0.019127 0.019138 0.06 
0.056254 0.076232 -0.03 
0.150149 0.170202 0.03 
0.299200 0.299484 0.09 
0.461621 0.461664 0.01 
0.653844 0.654093 0.04 
0.852716 0.873246 0.06 
1.115343 1.115622 0.02 
1.356225 1.356851 0.05 
1.652861 1.652902 0.00 

Angle 
I deg I 

0.00 
0.59 
1.5; 
2.33 
3.05 
3.56 
4.40 
5.01 
5.52 
6.01 
6.35 

0.00 
1.44 
2.36 
4.22 
5.54 
6 .  76 
5.86 
P.57 
9. ;o 

10.44 
10.95 

0.00 
1.33 
3.62 
5 . 3  
i.00 
8.52 
9.R6 

11.13 
12.12 
12.99 
13.55 

(% differences are with respect to integral wlution) 
(comparisons based on results from 10 eleriirnr ntodels ! 

two factors. The first is the comparitively sIo\v Runge-Iiurta 

integration procedure used in the differential formulation. For a 
short period of viscoelastic deformation, the cdrularion of the 
convolution integral of the integral formulation. requiring sini- 
ple summation of a limited number of terms. can be performed 
much more rapidly. 

The second factor is that the fixed point iteration scheme 
of the integral formulation, although requiring more iterations 
than the Newton method, is also performed more rapidly since it 
is simply an algebraic operation. The h'erton method. in con- 
trast, requires inversion of the matrix premultiplying the wc- 
tor of trial function corrections and then numerical evaluation 
through solution of the system of equations. Even for just a 10 
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r iPr l renr  he;lnl. thj, process is slow in conlparison to the fixed 

point i t  vaticin. 
~ J ~ , , ~ ~ ~ ~ .  ai tile length of the period of viscoelastic d e b  

iilcp-aspS. this relative speed relationship reverses. Even- 
tually. t he difierential formulation begins to generate solutions 
"inre rapiillv ihan the integral method. In the example problem 
2e.rriheil ahove. this generally occurred approximately between 
the  second and third time constants. The reason for this change 
ic directl! related to the conlputation of the convolution inte- 
CAI of :he integral technique. As time increases, the nuniher 
of ternis in the summation increases linearly. This in turn, in- 
rreacer the nuxuher of additions which nus t  be performed and 
:herefore 1inc.arly increases the time need for each computation. 
In cont:ast. the speed of the Runge-h'utta integration routine is 
virtually independent of time. Thus. the continually increasing 
roiiiput at ion effort required in the integral technique eventually 
osrecd.  t trat Y I ~ W , ~  for the differential technique thereby reversing 
1 ti,, r+,litt ivi. * p e d  rdationbliip. 

V. Conclusions 

D ; d  nn the  results reported herein and elsewhere 1121 
j *  I -  r i c r I u d w i  chiit the differential foriiiulation procedure pre- 
-vn:vd c;m rtiiplowd for the analysis of quasistatic nonlinear 
i,!i~.-(~iiiienci~~yial vi3roeiastic problems. This conclusion is based 
4i:ertiv OIL :he high level of correlation between results devel- 
oped r i . i r ~ q  rhir  formulation technique to those obtained with 
;he p : ~ v i o u s l ~  published integral method for solution of such 
?rnbi-n:-. .Additionally. it is noted that both of these meth- 
c d -  px!.ihit exreptionally similar accuracy characteristics with 
rrghrd to tile niinher of elements employed in the approximna- 
iiorr. For hoth. a relatively low number of elements can be used 
wi:hnEr Pngendering any significant errors. 

A cknorledgement 

The research described above has been performed under 
S.45.4 Grant So. 3-53-1. The financial support provided by 
S.AS.4 ic gratefully acknowledged hy the authors. The authors 
x i G h  rn extend their thanks and appreciation to Dr. C. Chamis 
$0: r!ir SAS.A.Lewis Research Center for his support and for the 
in.irhlr into the prohleni which he provided during our many 
rerfin;ral dizcussions. 

3. Schapery, R.A., "Approximate Methods of Transform In- 
version for Viscoelastic Stress Analysis," Proceedings of 
4th US National Congress on Applied Mechanics,Vol. 2, 
1962, pp. 1055-1085. 

4. Kraus, H., Creep Analysis, John Wiley 6. Sons, New York, 
1980. 

5. Libove, C., "Creep Buckling of Columns," -1 of th 
-s, Vol. 19, No, 7, 1952, pp. 459-467. 

6. Zyczkowski, M., "Geomertically Non-linear Buckling of 
Bars," IUTAM Colloquium on Creep in Structures, Stan- 

ford Vniversity, CA, Academic Press, New York, 1962, 
pp. 305-325. 

7. Patel, S. A., "Buckling of Columns in the Presence of 
Creep," The Aeronautical Quarterly, Vol. 7, No. 2, 1956, 

8. Hoff, N. J., "A Survey of the Theories of Creep Buckling," 
Proceedings of the 3rd US National Congress of Applied 
Mechanics, 1958, pp. 29-49. 

pp. 25-134. 

9. Rogers, T. G. and Lee, E. H.,"On the Finite Deflection 
of a Viscoelastic Cantilever," Proceedings of the 4th US 
National Congress on Applied Mechanics, Vol. 2. 1962, 
pp. 955-987. 

10. Stubstad, J. M. and Simitses, G. J., "Bounding Solutions 
of Geometrically Nonlinear Viscoelastic Problems," 8198 
Journal, Vol. 24, No. 11,1986, pp. 1843-1850. 

' 

11. Thurston, C., "Newton's Method Applied to Problems 
in Nonlinear Mechanics," Journal of Applied Mechanics, 
Vol. 32, 1965, pp. 383-388. 

12. Stubst ad, J. M., "Nonlinear Thermoviscoelastic Analysis 
of Metallic PLane Curved Beanis," Doctoral Thesis sub- 
mitted in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy, Georgia Institute of Tech- 
nology, Atlanta, GA, 1986. 

13. Vinogradov, A. M., "Nonlinear Effects in Creep Buckling 
Analysis of Columns," Journal of Engineering Mechanics, 
Vol. 111, No. 6, 1985, pp. 757-765. 

14. Vinogradov, A. M. and Wijeweera, H., "Theoretical and 
Experimental Studies on Creep Buckling," Proceedings 
of the 26th AIAAJASMEJASCEJAHS Structures, Struc- 
tural Dynamics and Materials Conference, 1985, Vol. I., 
pp. 160-164. 

15. Triconli, F. G., Integral Equations, Dover, N.Y., 1985. 

Peferences 

1. Gristensen. R. .\I.. Theor;von'iscoelasticity,Introduction 
Academic Press. Sew York, 1982. 

2. Hahotnov. Y. S..Elements of Hereditary Solid Mechanics 
>I!: Puhlirations, Moscow, I'SSR, 1980. 

ORlGlMkL PAGE 6 
OF POOR QUALITY 

I 

465 



NON-ISOTIIERXIAL ELASTO\'ISCOPLASTI(' SNAP-THROUGH AND CREEP BIlCKLING 
OF SHALLOW ARCHES 
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Abstract 

The prol,leiii of Iiuckhg of sl~allow arches uiidrr transient 
theriiie~iiierh;ctiical I~ads is investigatetl. The analysis is lmed on 
noiiliiiiw geoiiietrir a d  ronstitiilive relations, uicl is expressed 
in a r i l t r  forni .  The tiiaterial ronstitiitive eqirations are capable 
of rqirotliicing all non-isot hernial. elasto-visroplast ic cliararter- 
istic\ .  The <olut ion sclieriie is rapal)le of predicting response 
rliir11 iiirliicie~ prr and posfl~ucklir~g with creep and plastir ef- 
Fv-i.. TIir whil iiin ))roceditre is cleiiioiistratetl through several 
ex;tiiipIi-~ wliirli include I~o11i rreep anel siiap-~ hroiigli Iwhavior. 

L Intrcrcl~~rt ioi) 

Ela-rir wap-through of low arches under quasi-static loads 
) i n s  Iwrn tlre subject of several investigations. The significanre of 
the prd1Ieiii. i n  so far a 5  i t  illustrates certain iniportant features 
in iiiorc roiiiplicated buckling probleiiis of plates and shells, was 
pointed OUI I,! Marguerre 11). who constructed a siniplified me- 
rhiiniral iiiodel to deiiionstrate these features. Tiriioshenko 121 
oI>raii~vil an approlriniate solution to the prohleiii of a low arch 
under a uiiiforndy distributed load. Biezeno 13) considered the 
p r i h h i i  o f  a low paraholic arch loaded laterally at the iiid-point 
{vir !I a ro~irentratetl load. He alto investigated snap-through 
h i i r L l i i ~ g  of a slrallow spherical cap, pinned along its circular 
I io i in i l~~rv .  itiitler the action of a concentrated load applied dong 
!lie a i *  of rot ational nynuiietry. He presented his approxiinate 
v J i i 1  i f m ~  i i ieans of load-deflection curves atid eclua~ions from 
c.Iiicli tlir critical loacl roulcl 1)c rnlrulatrtl. 

in IY:,~. Fring aiid KapIan 141 investigslecl the prohletii of 
lo\$ pinrird arrlier of various initial shaprs and spatid distribu- 
tioils of  the 1;cteral load. Their results slior that a very shallow 
arch sriapc -titrough syiiuiietricdly. wherea.. a higher arch huck- 
Ic.2 a~~iiuiietrically. They also ran a limited nuiiiber of experi- 
111enrn1 te\ts.  and their experitiienlal data are in good ;yreenient 
\r.ith ~lrrir  tiieoretiral results. Ahorit the saiiie tiiiie. HofT iuid 
Uriicr 5 ' .  i n  invrstigating the 1iossil)ility of snap-tlirough buck- 
ling of a low pilined arch wi th  a half-sine-wave initial shape 
tiritlcr a half-rine-wave distrit)rited clynaiiur load (suddenlv ap- 
plied with iiitinite duration). ohained results for the quasi-st.at.ir 
loa11 raw which are identical to those obtained by Fung iuid Ka- 
p I ~ : i  for r l ~  carlie problciii. 

Cop?ripht I American Insliiutr of Acronsulia rod 
.4rtronaulicr. Inc.. 1987. AU rights rcurved. 
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In  19G2, Gjelsvik and Bodner [G] obtained mi approxiiiiate 
solution to the problerri of a lor circular arch with a ronren- 
trat.ed load at tlie iilid point of tlie arch and claiiiped hound- 
ary ronditions. They also report ed on experiiiieiital tests. and 
tliere is good agreeiiient hetween their theoretical prerlictiorrr 
and their exj)eriiiientaI resull s. Schrever iuid hlawr I S ]  ohtainecl 
mi exact solution lo  their prol)leni (and for the load race of 
uniforiii pressure). and they showed that for the coricmtrated 
load caw.t he arrh snaps-I hrough syiiuiietricallr regarcllesr of 
the value of the rise paraiiieter. hlasiir and L o  !R, prc*\eiitecl 
a general eliscussion of tlir I)eliavior of the rliallr~r cirrrilar arch 
regartling l~irckling~ post -1~iickIiiig and iinyierfert ion w n 4  ivit v. 
Snapping of ICIW pinned arches rcsling on ai elastir foiiiitl;itioii 

ha\ Iwen investigated . .. I)? Siiiutse* 19;. This SWI~I I I  exliiliit* dl 
forin* of rxperiiirnt.dly ol).;ervetl I)urkling pli~nc~riie~ra (siiioot 11 
and violent) and of theoret ically predicted respoiisec (liiiut point. 
bifurcation with stable hrancliing and bifurcation with unstalile 
I)ranrhing), and it is presented ritli sufficient detail in Ref. 10. 
Experiixiental results have also heen reported hy Roorda :1 I]. 

The eflerls of inelastir iimterial behavior found their rav into 
the literature since the 1960's. Onat and Shu j12: ron4clered the 
behavior to be one of rigid-perfectly plastic. Froiiiriosi. Augucti 
wid Spararjo 1131 disrussed the rollapse of arches under repeared 
loads with inelastic nmterial behavior. Studies of inelast ir snap- 
through buckling of shallow arches were also reported by Lee 
and Murphy [Id]. In addition Aiigusti !15) investigated plastic 
buckling of a model of a three hingrcl cucli in 1968. and a inore 
coiiiplete analysis of the same model was provided I)! Barter- 
itian {I(;j in 13il. Finally. the reatlrr rho is intermled in the 
1111 iiiiatc s~rtvigtli of parahidir stprl nrclies wit I1 11r;iriiig rvst rin 
is refrrrctl to Koiiiatsu [ I  71. who considers inchst ir iii-IiIaiie iujd 
orit-of-plarir i~istal)ilities and provicles clesigri foriiiiilir for each 
rase. 

The elastic resportse of arches under sudden (tlvnmilir ) ap- 
plication of the exteriial loads 11a. been reported I iv Hoff ruicl 
Bruce 15). Hsii (211. [E] .  arid Lock [XI. For a more roiiiplete 
biBliograpliy w e  Hef. 24. 

('reel) Inickling of sliallow arclie5 hac Iwen inve~tigatecl h v  
Huang and Nachlm 1181. Krajcinovir (19;. and Botros axid Bi- 
enek ;'LO]. 

A s  far as the aittliors know no work hac I)een reported ori  the 

non-isotheniial elastovisro-plastic hehavior of cliallor arches. 
The piirpose of this paper is to deiiionstrate the erect of liighlv 
nonlinear iiiaterial behavior on the snap tliroiigli and rreep I)uck- 
ling of sIia1low arches. 

. . .. ~- 

L 



11. Elasto-Theriiio-~iscoplastic Constitutive Relations 

The prediction of buckling loads and post buckling behavior 
of ctructural coliiponcnts. like shallow arche% made of a redistic 
r:rrtaibc Illaterial and subjected to non-isotherlid theriiiorue- 
rliaiiirill lciadb hac increased in importance hi recent yews. 

1.nairr t t i i ,  kind of severe loading conditions, the structural 
be!iavior i. highly nonlinear due to the combined action of ge- 
oiiirtrird and physical nonlineluities. On one side, finite defor- 
mation in a st reaced structure introduces nonlinear geonietric 
erect.. Orl thr other side. physical nonlinearities arise even in 
.iuall st rain regimes, whereby inelastic phenoniena play a par- 
ticularly important role. From a theoreticd standpoint, nonlin- 
ear rori'titutire equations should he applied only in connection 
w i t h  riorilinear transforniat ion iiieasures (implying both defor- 
mation and rotations). However, in aliiiost dl of the works in 
rhis area 251. the two identified sources of nonlinearities are 
A I H A I ,  separated. The separation yields, at one end of the spec- 
trui i~.  pru!,lrlns of large response, while at the other end, prob- 
h i ! ,  of vi.riniG d ; o r  non-isotherniirl behavior in the presence 
q t f  \ I I I ; I I I  , triiiri.  

Tire cla.-ical theories, in which the inaterial response is char- 
acti-riird ;,. ;t rotiiliinatiori of distinct elastic. thennal, tiirie indc 
p i b t i q i w t  itac.I;r\tic (plastic) and time dependent inelastic (creep) 
i:$.faoriilar iori roiiiponents cannot explain some phenoitlena, that 
rai l  t , i , - ~ r v c t d  in coiiiplex therino-iiiechanicd loading histo- 
riei. Thib is particularly true when high-temperature non- 
i.othz:uld processes iiiust be taken into account. There is a 
SizeaIDle hody of literature (251, [261 on phenomenological consti- 
r r i t i v . r  rquatioris for the rate and temperature dependent plastic 
c1rfori:i;t: ion behavior of metallic iimrerials. However. diiiost all 
of thew ricxv "unified" theories are based on sinal1 strain theo- 
rip. irrd w v t - r a l  w f G r  froill .soiiie theniiodynaiilir inconsistencies. 

I f 1  it ; J ~ - V I I ~ J +  paper 1271. the authors have presented a CO111- 

plrrr -+,i id c t i i i c t i t  utive relations for nonisothermal. large strain, 
+Iarir, . . I - (  oplactic heharior of nietals. I t  was shown there 1271 
that the iriptric tensor in the convected (itlaterial) coordinate 
r v \ t m 1  ran he linearly decoiiiposed into elastic and (visco) p h -  
i i r  parrs. So a yield function was assumed, which is dependent 
on the i a t ~  of change of stress on the nietric, on the temperature 
ani1 on R <et of internal variables. hIoreover, a hypoelastic law 
~ i r -  c l i ~ w n  t o  describe the theriiio-elastic part of the defoniia- 
1 IOII .  

.A t i i i i r  and temperature dependent viscoplasticity iiiodel W~U 

furtiiulated iii  thic convected niaterial systeiii to account for finite 
st rains and rotations. The history and temperature dependence 
rere inrorporatecl through the introduction of internal variables. 
The r h r r  of these varialiles. as well ac their evolution, WIS 1110- 

t I \  a t  ed In therriiodynaiiuc considerations. 

errierges tliat part of the plastic work IS used lor produciig iebiu- 

u d  stresses in the lattice, which, when phenoiiienologically con- 
sidered. causes hardening. Both liiuut at ions were excluded fro111 

this 1271 forinulation. Accuracy of the foriiiulation was checked 
on a wide range of exiuiiples [28]. 

The constitutive relation will he rephrased here in some dif- 
ferent form. For brevity we coinpile only soiiie notations and 
fundanieiital relations which are used in the forniulation of the 
intended Constitutive low. For details, see (271 and (281. 

Concerning the foriiiulation of constitutive laws i t  is advan- 
tageous to use a iiiaterid (co-iiioving) coordinate svsteiii. The 
transforillat ion froiH the uiiderforiiied state (iuetric g,&) to the 
deforiited state can he represented l ~ p  the tensor: 

0 

II =ytr grk or ( j - '  I; = g'' ;,& (1) 
The total deformation rate is defined by 

represents the synuiietric part of ( jvk or the covariant deriva- 
tive with respect to tiiiie. also called the roiiverlcd derivation, 
which is due to Zareiiiha aid Jauiiiaun. 

The total deformation CNI be deroiiiposed according to 

. 0 .  (i! ip) 

fI =Y'm9mr LIS& =f;f; (4 1 

where the superscript ( ) relates to a fictitious configuration de- 
fined by a fictitious reversible process with frozen internal vari- 
ables. The decoiiiposition of Eq. (4 )  leadr to a11 additive de- 
coniposition of the deforiiiation rate 

(r) (11 

8; =8& t 8& (5) 
( 7 )  ( 8 )  

d i  is related to the reversible defonnations. whereas di. denotes 
the reiiiaining part of the deforiiiation rate. 

For the description of the siress state, we introduce the Kir- 
choff stress tensor s;, which is connected with the red  Cauchy 
stress tensor u;, hy the relation: 

Assuiiung that the elastic beliavior is not affected essentially 
by inelastic defoniiations, the following hypoelastic increiiiental 
law was chosen [ Z i ]  

with 
The noni-orheririal elasto-viscoplastic defonuation process 

W a c  dewihed coinpletely hy "thermodyn;unic state" equations. t; : weighted stress deviator 
M o c t  inr.esrigators :2j], [26] (in the area of viscoplasticity) ein- C : shear inodulus 
plov plastic strain$ as state variahles. The authors' previous K : bulk iiiodulus I 

*rudy .XI shows that, in general. use of plastic strains BS state o : coefficient of theriiial exi)wioion 
v.viab1- may lead IO inconsistencies with regard to thennody- I 

The following constitutive relations were established ( 2 i )  for narilic considerations. Furtheriiiore, the approach and fornu- 
la? ion prnployed in previous works leads to the condition that 
dl the nlactic work is completely dissipated. This, however, 

the 
yield 

- -  
is ir. contradiction with experiiiiental evidence, froiii which it F = (fi - c;g$,(t: - d g $ )  - k*(A,T) = f*  - cz > 0 (8) 
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with 

evolution l aw for tlie internal variables: 

if 

then 

w i t h  

if 

or 

then 

F < O  

IVit Iiiii tlic developed frame the elasto-viscoplastic behav- 
ior is governed by the scalar material functions e (~ ; .  T. A,&). 
k ' ( .~ .T) .g ( s i . .d ,T .4 ) .~ (d .T1d~) .and  s(d,.T,&). These~ua- 
terial fuiict ions can be determined froin a series of nionotonic 
and cyclic procr\ces with proportional and nonproportional pathc 
at dill-rent teiuperature levels 1281. 

I l l .  <klieral Foriiiulation and Soh tion Scheme1 

Tlie rate forin of the constitutive equations suggests that a 
rate approarli I)c taken toward the entire problem so that flow 
i *  viewed a% liictory dependent process rather than an event. 
For tldc piirpose. a coniplete true ah-initio rate theory of kine- 
iliatics and kinetics for continuuiii and curved thin structures. 
nit hout any restriction on tlie magnitude of the trancfonnation 
was pretented in Ref. 28. It is iiiipleniented with respect to 
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a body- fixed system of concected coordinates. and it is valid 
for finite strains irnd finite rotations. The time dependence and 
large strain behavior are incorporated through the intrudurtion 
of the time rater of change of the metric and of the curvature. 

The constitutive law may be appiied to the conservation of 
nioiiientum via an appropriate variational principle. The prin- 
ciple of virtual power (or of virtual velocities) reads 

where 6 1 3 ,  are the virtual velocities. f J  the bodr force\ per i i t i i t  

iiiass and vTJ the surface tractionr. 'Total differentiation of Eq. 
( 2 2 )  yields, 

At any instant. Eq. (23) 11iiist be satisfied. Tlie virt~~;rl 5-1.- 

lociry and its tiiiie derivative are then indepeiitlerit. Ilorrover. 
tlie last three terms of Eq. (23) are equivalent to Eq. i 2 i .  
Hence, tlie principle of the rate of virtual power ;ria! l w  di- 
tained in its concise foriii. For further classifirarion6. tlie total 

derivative of the stress components r i l l  be reprevnted t)y 111e 
Jauiiian derivative. and the following integrals are defined hy 

Then. sul)slitutioii in Eq. (43)  yields the final f i m i  IJf the priri 
ciple of the rate of virtual power. 

The quasi-linear nature of the priliciplc id t l i e  riitv Id v i r ~ u ; J  
power suggests the adoption of M increiiierital approacli to nu- 
merical integration with respect to time. The availahiliry of the 
field foriiiulation provides ammtnce of the coiiipletene.~ of the 
increriiental equations and allows the use of anv converiieril pro- 
cedure for spatial integration over the domain V. In the prrbent 
instance the choice has heen iimde id favor of a \iriiple lir-t order 
expansion in time for the construction of incremental solution. 
froin the results of finite element spatial integration of the gov- 
erning equations. 

The procedure eniployed pernuts the rates of thr field forii iu- 

lation to he interpreted a5 increments in the nuliieriral hddution. 
This is particularly convenient for the construrtiuti of iricretiien- 
t a l  boundary condition histories. 

The finite element method for spatial discretization ha* Iwen , 
well documented (see. e.g. Zienkiewicz [?9; or O h  :3:) iuid 
will not be detailed here. Restricting attention to i~ single finite 
element B,", the velocity field is approxiuiaretl hv f , (  I' 1. 

tli(rJ) fii(d) = ( r a ~ ) ~ t l ; ( ~ J ) \ - L 3  0 . 3  = i......~ ( 2 s )  
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The algebraic rounterpart of Eq. (51 after the finite eleiiient 
e i i . r r~~~ iza ; i (m ic rhe well-known stiffness expression 

i i i r i ,  . i ir i;llic(.lli ~tiffiiess iiiarrix YK;. the vector of the incre- 
:i+.~iikI .;*lorii ies { I . } .  and the vector out-of-halance-force rates, 
exrrr:lai forrr rate6 { P }  iiuiiur internal force rates {F}. Tlie ho- 
IIK,~~;N~II. ra-e of Eq. (39) indicates either the non-uniqueness 
of i t t l .  r~(jiiilit~riiiiii path at a stable or unstahlc bifurcation point 
cir i t , *  ~ i t i i c ~ i i r  ibi i t  uiictalde situation at a liiilit point. Heiice tliis 
r:i:e:ioii r i a v  lw evaluated by a deteniunant check or supple- 
iii-:it;trv iai:riivalue analysis for the load paraiiieter ~)arallel to 
r!,r l r a k t l i r ~ ;  pr,o+*. 

E:*!, x i : , G l w  t he  condition of static external loads ancl~slorly 
:r,,ir I:#? t ra+lj vffi.rt\. the prewwc of snap-tliroiigh I~li~klit1.g 
1 1 d 1 . .  I 111. i w r ~  i i ~  &rts signilirant. 111 dynaiiuc iuialyses, tlie 
q b ; J i i d  1 , 1 d v  force< include inertia forces. Assuiiling that the 
111;c.. , d  r i l e .  i ~ , i l v  considered is preserved, the i i l i lss iimtrix can 
1 , s .  r\:d:i;tivil prior to the tiiiie integration using the initial con- 
rzi::afiam. 

Fi : i i i+  viriiient solution of any boundary-value proldeiii in- 
:l,i..- ; h *  -o!iifion of the eyuilihriuiii equation (gl01)al) together 
ivirli iiir r ~ ~ i i - : i t r i t i v e  equation (local). Both equations are solved 
-ir:iul:;c:~*~ . i ~ . i i .  in a step hy step iiiaiiner. The increiiiental foriii 
(i r!l+ z l o ~ d  i l r i r l  local equations can he achieved by taking the 
inrezrkiilch over the increiiiental tiiiie step At = f j + l  - t j .  The 
r-rra:;n!iiar rirk t ias heen applied to execute the resultiiig tiiiie 
ii,i+.z::tii<qi. 

i6,;triv. r hr niiiiierical solution iiivolves iteration. A siiiipli- 
r i * 4  i - r - i im 21: of Hiks Weiiipner constant-arc-length method 
!.+ I + C I I  iirilize~l. This iteration procedure which is a general- 
i z ; t i i ( c  of rhe ilicplareiiient control iiiethod also allows to trace 
t h e  :io alineitr response beyond hifurcation points. In contrast 
: ! I  t!w rimwnrioii.4 Sewtoii-Raphson techniques, the iteration 
4.; r t w  riirrhncl rakes place in the velocity and load rate spare. 
'i i t m i  I IT)^ ol' t he  first solution in each increiiient is liiiutecl 
1,: r o : ~ f r ~ ~ I i r i ~ ~  ihc length ds of the tangent. Either the length is 
i..,;': r i i i i - r a i i i  i i i  each step or it is adapted to the characteristics 
,#I : i l l .  . , , I i i r  ion. I r i  each step the triaiigular-sized stiffness iiiatrix 
!.A- I , ,  I W  rtrrrkrcl for negative diagonal teriiis. indicating that a 
I r::ir;:l 1 , < 1 i r 1 1  i 4  rrarlled. 

! 

11.. Shallow Circular C'laiilped Arch 

I T!)*. r tI*,orv arid roiiiputational procedures described in the 
l~r+-~liitc .-rrion. have heen applied to the creep buckling anal- 
:-i- <if  a -iidlorv rirrular clariiped arch. The prohlein of the 
r:;tiiip*ii ;rrrIi Iwcitle being of wine practical interest contains a 
:.li::ii**r < I f  .i:iularities to that of the unifortidy loaded sphericd 
r + .  Titr ~ r ~ w l  of result5 of the arch prol)letii serves as a good 
i:iiilrhi(,r I O  r l w  Iwhavior of the latter. 

I 
i 

The shallow circular claiiiped arch sitl~jected to a single cen- 
tral conceiitrrted load. as shown iii Fig. 1, is iuialyzecl. The 
niaterid rhosen for tlie nuiiierical experiiiientation is the car- 
hon steel ('-45 (DIN 1520) with E = IO' psi, v = 0.3 and 
oy = 2. i  x 10' pri at rooiii teiiiperature. The viscoplastic prop 
erties (the scalar iiiaterid functions) were obtained in Ref. 28. 

I 

Fig. 1 Claiiiped C'ircular Arch 

The analysis is perforriled with the aid of 24 paralinear iso- 
paraiiietric eleiiients, Fig. 2. The paritlinear isopariuiiet ric el- 
ement is intended for the analvsis of oriented structures where 
the geometry is such that the thickness in siiiall roiiipnred to 
other diiiiensions. The characteristics of tlie eleiiient arc defined 
hy tlie geotiietry iuicl interpolation hinctions. rliirli are linear 
in the tliickness direction and parabolic in tlie longitudinal di- 
rection (see Fig. 2). (:oiisequentlv, the eleiiieiit allows for shear 
straiii energy since iioriiials to a iilicl surface before cleforiiiat ion 
reiiiain straight, hut not necessarily noriiial to the slid stirface 
after deforiiiation. 

I Nooe I Ni I 

Fig. 2 Paralinear Isopariuiietric Eleiiient 

Tlie elastic behavior, corresponding to hoth axisymetric and 
asyiiietric response, is shown on Fig 3. These curves are in 
coiiiplete agreeiiient with those produced by.C;jelsvik and Bod- 
ner [GI, only heckuse the young's iiiodulus irnd Poisson*s ratio 
values used are virtually the saine (carbon steel C:-45 here, and 
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2024-T-l aluiiunuiii alloy in Ref. G ). Note that these elastic 
response curves are hypothetical for our iimterial but true for 
the 2024-T4 alloy. The triie behavior for our riiaterid is elasto- 

. viscoplastic and it is labeled as such on Fig. 3. Note thqt this 
curve represents quasi-static (steady state) elastovisco- plastic 
response, as described by the chosen constitutive law. According 
to this. snapping occurs at a load of 26.20 lhs, prhilarily because 
of the low yield strength. Then, the post-liirut point behavior 
sehiiis to be pririiarily driven by viscoplastic behavior. 

1. ir 6 

Fig. 3 The Arch Response 

It is expected here that if loads up to approxiniately 11 Ihs 
are reached quasi-statically and left applied for a long time the 
priniary recponse will lie creep and the critical time to crwp 
will be extreiirely large. On the other hand, for loads between 
14 Ibs and 26.2 Ibs ( especially for the higher range ) the hehav- 
ior will he a co~~ibination of creep and snap-through buckling. 
This ir liest demonrtr~ted by the curve on Fig. 4. The applied 
load is reached quasi-statically in 13 nlinutes and then it is kept 
constant. The curve of Fig. 4 depicts the behavior of the arch 
in tcriiic of nudpoint deflection versus time. Creep. initially, is 
very slow. lhcn snap-through takes place iii 32 nuniites, curve 
IK'. atid tlien tlie crwp beliavior cotitiiiurz until a critical tinie 
to creep (creep buckling occurs) is reached after a totd tinie 
of 95 iiunutes. Note that for this loading condition the critical 
tinie to creep is 95 nunutes. Creep buckling and critical time to 
creep are Iiased on the phenoinenon that the deflection increased 
very rapidly. For loads higher than 26.2 Ibs, it is expected that 
snapping will occur early, during quasi- static loading and then 
the creep behavior will he similar to that shown on Fig 4, past 
point c. 

The next exlunple considers the influence of cyclic loading on 
the response. Figure 5 illustrates the load deflection behavior 
of the arch under a cyclicnlly applied external load. The load 
is increa5ed. quasi-statically, froiii zero to 26 Ibs in 5 minutes, 
then it is held constant for 2.5 iiunutes, after that it is reduced 
to 20 lbs and held constant for 50 iilinutes, then raised to 25.5 
11,s for 2.5 iiunutes and finally it is reduced back to 20 111s and 
held constant. 
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Fig. 4 Deflection Tiirie History 

1 I I I J 
1 in d 

Fig. 5 Multi-Cycle Arch Response 

The steady state response under this type of loading exhibits 
several liiiut points, which limy imply that snapping is iriuni- 
nent shortly after the load reaches the value of 26 Ihc Il)erween 
points A and B on Fig 5) .  The dashed curve correc1)onds ro 
the hypothetical elastic static response and it is only shown for 
coiiiparison purposes. 

The last exluiiple presented in Fig 6. consider the influence 
of teiirperature on the arch behavior. The loading history is the 
sanie on the one shown on Fig. 4. The curve rorresporlding to 

T = 50°F was discussed previously (Fig. 4), and it is used here 
N a hksis for comparison. When the terriperature is raised to 

2OOoF (after this, the loading is applied), the tinie to snap is 
reduced to 2G ~iunutes, while the critical titiie to creep is not 
appreciable dected. On the other hand at the highest teiiipera- 
ture T = IOOO"F, for which results are shorn. The critical ti111c 

to creep is reduced to G2 iiunutes. and the steady state response 
does not show a clear snap-t hrough beliavior. 
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